22 research outputs found

    Information Theoretic Limits for Standard and One-Bit Compressed Sensing with Graph-Structured Sparsity

    Full text link
    In this paper, we analyze the information theoretic lower bound on the necessary number of samples needed for recovering a sparse signal under different compressed sensing settings. We focus on the weighted graph model, a model-based framework proposed by Hegde et al. (2015), for standard compressed sensing as well as for one-bit compressed sensing. We study both the noisy and noiseless regimes. Our analysis is general in the sense that it applies to any algorithm used to recover the signal. We carefully construct restricted ensembles for different settings and then apply Fano's inequality to establish the lower bound on the necessary number of samples. Furthermore, we show that our bound is tight for one-bit compressed sensing, while for standard compressed sensing, our bound is tight up to a logarithmic factor of the number of non-zero entries in the signal

    Provable Sample Complexity Guarantees for Learning of Continuous-Action Graphical Games with Nonparametric Utilities

    Full text link
    In this paper, we study the problem of learning the exact structure of continuous-action games with non-parametric utility functions. We propose an β„“1\ell_1 regularized method which encourages sparsity of the coefficients of the Fourier transform of the recovered utilities. Our method works by accessing very few Nash equilibria and their noisy utilities. Under certain technical conditions, our method also recovers the exact structure of these utility functions, and thus, the exact structure of the game. Furthermore, our method only needs a logarithmic number of samples in terms of the number of players and runs in polynomial time. We follow the primal-dual witness framework to provide provable theoretical guarantees.Comment: arXiv admin note: text overlap with arXiv:1911.0422

    Outlier-robust Estimation of a Sparse Linear Model Using Invexity

    Full text link
    In this paper, we study problem of estimating a sparse regression vector with correct support in the presence of outlier samples. The inconsistency of lasso-type methods is well known in this scenario. We propose a combinatorial version of outlier-robust lasso which also identifies clean samples. Subsequently, we use these clean samples to make a good estimation. We also provide a novel invex relaxation for the combinatorial problem and provide provable theoretical guarantees for this relaxation. Finally, we conduct experiments to validate our theory and compare our results against standard lasso

    Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem

    Full text link
    In this paper, we study the problem of fair sparse regression on a biased dataset where bias depends upon a hidden binary attribute. The presence of a hidden attribute adds an extra layer of complexity to the problem by combining sparse regression and clustering with unknown binary labels. The corresponding optimization problem is combinatorial, but we propose a novel relaxation of it as an \emph{invex} optimization problem. To the best of our knowledge, this is the first invex relaxation for a combinatorial problem. We show that the inclusion of the debiasing/fairness constraint in our model has no adverse effect on the performance. Rather, it enables the recovery of the hidden attribute. The support of our recovered regression parameter vector matches exactly with the true parameter vector. Moreover, we simultaneously solve the clustering problem by recovering the exact value of the hidden attribute for each sample. Our method uses carefully constructed primal dual witnesses to provide theoretical guarantees for the combinatorial problem. To that end, we show that the sample complexity of our method is logarithmic in terms of the dimension of the regression parameter vector

    A Simple Unified Framework for High Dimensional Bandit Problems

    Full text link
    Stochastic high dimensional bandit problems with low dimensional structures are useful in different applications such as online advertising and drug discovery. In this work, we propose a simple unified algorithm for such problems and present a general analysis framework for the regret upper bound of our algorithm. We show that under some mild unified assumptions, our algorithm can be applied to different high dimensional bandit problems. Our framework utilizes the low dimensional structure to guide the parameter estimation in the problem, therefore our algorithm achieves the best regret bounds in the LASSO bandit, as well as novel bounds in the low-rank matrix bandit, the group sparse matrix bandit, and in a new problem: the multi-agent LASSO bandit

    Invex Programs: First Order Algorithms and Their Convergence

    Full text link
    Invex programs are a special kind of non-convex problems which attain global minima at every stationary point. While classical first-order gradient descent methods can solve them, they converge very slowly. In this paper, we propose new first-order algorithms to solve the general class of invex problems. We identify sufficient conditions for convergence of our algorithms and provide rates of convergence. Furthermore, we go beyond unconstrained problems and provide a novel projected gradient method for constrained invex programs with convergence rate guarantees. We compare and contrast our results with existing first-order algorithms for a variety of unconstrained and constrained invex problems. To the best of our knowledge, our proposed algorithm is the first algorithm to solve constrained invex programs
    corecore